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Under suitable physically reasonable initial assumptions, a functional central 
limit theorem is obtained for a nonequilibrium model of randomly interacting 
particles with unbounded jump intensity. This model is related to a nonlinear 
Boltzmann-type equation. 
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1. I N T R O D U C T I O N  

Problems of nonequilibrium statistical physics stimulate new developments 
in the theory of stochastic processes, which in turn provides a mathemati- 
cally rigourous foundation for this subject. A valuable goal is thus the 
construction of models adapted to the study of nonequilibrium properties 
of various physical systems of subsystems. For some of these, the sub- 
systems (also called particles) engage in interactions with the following two 
properties: they are binary and the result of an interaction is random. The 
Boltzmann model is such an example. On the other hand, most of the results 
in the stochastic processes literature are for the spatially homogeneous 
case. From the physical viewpoint, spatially homogeneous systems of such 
interacting particles are meaningless. However, in his book, Skor6hod (12) 
has shown that these artificial systems approximate sufficiently well 
mollified models of the Boltzmann type, at least to obtain the existence of 
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the solution of the non-space-homogeneous mollified nonlinear Boltzmann- 
like evolution equation that he studied. 

Related to Skorohod's approach is the problem of the fluctuation of 
the empirical laws around the solution. It seems reasonable, as a first step, 
to study these fluctuations for some space-homogeneous cases. 

Already Kac (8) considered the fluctuation problem for his caricature of 
a space-homogeneous Maxwellian gas. He regarded the problem as a central 
limit theorem in which the limit process yields an infinite-dimensional 
Ornstein-Uhlenbeck process. These situations were clarified by McKean, (1~ 
but the discussion lacks rigor except for his two-velocities model. The 
difficulty arises from the infinite-dimensional feature of the analysis 
employed. Later, Tanaka, (15) for the equilibrium case, and Uchiyama, (16) 
for the nonequilibrium case, succeeded in giving rigorous proofs for Kac's 
caricature. They used general results in infinite dimensions due to Ito. (6) 
Their limit theorems are stated as results for processes with values in the 
space of tempered distributions. The equilibrium case for hard spheres with 
a cutoff was also treated by Uchiyama (17) using the same space. Later, 
Ferland et  al. (3) started a new proof for the nonequilibrium case of Kac's 
caricature, which can be extended to other models (see Ferland and 
Roberge(4)). The processes are in a suitable Hilbert space equipped with his 
weak topology. They used general results due to Fernique. (51 

All the models mentioned above are of bounded intensity. In this 
paper, we discuss a space-homogeneous model akin to the origin hard- 
sphere example of Boltzmann. It is a model with an unbounded intensity 
and we have to modify the approach in ref. 3. Our one-dimensional reduc- 
tion of the hard-sphere model has regular properties that allow a change 
of variables which leads to expression (8) below. We are then able to write 
the fluctuations more explicitly as elements of a well-chosen Hilbert space. 
With this representation, we can then show the convergence of the fluctua- 
tion processes in another Hilbert space. It is a functional central limit 
theorem. Such functional results are needed to control the error done by a 
simulation (see Wagner, (~81 where a uniform control is already needed to 
show the convergence of the empirical laws). 

A stepping stone to our study is ref. 14; this is because we have not 
tried to adapt Skorohod's approach to our case. We are planning to do that 
in the near future, since, with this methodology, the existence of a solution 
of the nonlinear evolution equation is a consequence of the convergence of 
the empirical laws. For  more information about nonequilibrium processes, 
the reader may consult Keizer's (9~ and Spohn's (~3) books. 
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. 

2. 
on 9~+) 

2, T H E  S E T U P  

We study in this paper a finite system of particles which is charac- 
terized by an intensity function for the jumps and by a binary interacting 
kernel. It is a spatially homogeneous model with unbounded intensity, 
which is a one-dimensional analog of what is known as the Boltzmann hard- 
sphere model. This is one of the models introduced in ref. 14. According to 
this work (see Theorem 2.1 below), for each n ~> 2 there exists a unique 
probability law pn on D([0,  T]; ~R+) such that: 

P"o(Xg) l=u" .  

For  at least the f eb B  (the real-valued bounded Borel functions 

z f] (,t 
It i < j  

is a martingale, where 

(Af"J)(X~) = [ f (X~ + A , . j ( r ) ) - f (X~)] r iXT . , -Xy , , [  dr 

A,,a(r) = h (X~ ,  X~,; r)e, + h(X~,, X~,; r)ej 

h(x, y; r) = r ( j  - x) 

X ~ is a Markov process which behaves in the following way: if, at some 
time, the process is at (x, ..... xn), it waits an exponential time with 
parameter 

and then changes its state to 

1 
2--s ~ [ x , -  xjl 

i < j  

(xl,..., (1 - r)xi + rxj ..... rxi + (1 - r)xj  ..... xn) 

with probability 

2 l x i - x j [ r d r  

E~<+ Ix,-x+l 

To this sequence of processes is associated a nonlinear Boltzmann-type 
equation: 

<u. ~ ) -  <Uo, ~o)=�89 <u~,A(uO~)as 
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where u o is a given probability measure on (9 t+ ,~ (~ t+) )  and, for 

with 

and 

(A( / t )~0)(x)  ~-- (]-~, ( A l ~ O ) ( x , - ) )  

(Akq~)(x, y) = f2 { (ercp)(x, y) ffr I x -  yl dr 

(erq~)(x, y) = q)((1 - r)x + ry) + ~o(rx + (1 - r) y) - q)(x) - ~o(y) 

Now let 

~ ' =  (l/n) ~ 6~,  
i=1 

and let/5, be the probability measure on D([0, T], Jr + )) which is the 
law of 

t ~  7 

the nth empirical process. The following results have been shown in ref. 14. 

Theorem 2.1. 

1. If E [ ( e g ,  x 2 ) ] < o %  then there exists a unique P" such that 
properties 1 and 2 above are true. 

2. If (Uo, x 2) < 0% then the Boltzmann-like equation has a unique 
solution which satisfies 

sup (us, x 2) < oe 
O~<s<~t 

. If ~ weakly converges to Uo and: 

(a) Vn, u" is exchangeable 

(b) 3a such that Vn, ( ~ g , x ) ~ a  a.e. 

(c) SUpnE[<~ ; , x2 ) ]<  

(a) <Uo, x2> < oc 

then P 6~t~.,~, moreover, we have 

sup sup E[(cq  ~, x2}] < c~ 
n O < ~ s ~ t  
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In particular, for each q) e Cb(R + ) and fi >/1, we have 

E [ I < ~ - u ~ ,  ~o>I e] ~ 0  (2) 

But to show the uniqueness of the limit fluctuation process we will need the 
following extension. 

I_emma 2.1. Assume ~ weakly converges to Uo. 

1. Under (a)-(d), for each ~0 ~ C(R+) such that I~o(xtl ~ C(1 + xl, we 
have 

. 

E[l<oe'2-u,, ~0>13 --*0 

If in assumptions (c) and (d), x 2 is replaced by x 4, then for each 
#~eC(R+ x R + )  such that 10(x,y)l ~<C(1 +x+y) ,  we have 

E[l<(~:-us)| ~>13 - , 0  

Proof. 1. Using a continuous function 0~g~< 1 equal to 
on [-M+6,  oo[ and to one on [0, M],  we have, by 
E [ [ < ( ~ - u , ) ,  g~o>]] --,0. So, for M >  1, we get 

lim sup E[-I < (c~' - us), cp >l] ~< lim sup E[ <(~" + u~), (1 -g)I~ol >] 

C 
~< lim sup ~r  E [  ((e7 + u~), x 2 >] 

C 
~ {(Us, x 2 ) + sup E[  (c~, x2) ]}  

zero 
(2t, 

Theorem 2.1 gives the first part of the lemma. 

2. It has been shown in ref. 14 that if for r >/2 we have 

s u p E [ < ~ ,  Ixlr>] < 
it 

then we get 

sup sup E[(~7, Ixlr)] < 
n O < ~ s ~ t  

with a similar statement for u,. Now, by Stone-Weierstrass, we are able to 
approach $ on a compact [-0, M] x [0, M] by a function of the form 

p 

y, ~o~(x) $~(y1; ~ok, g,~ ~ c~ 
k = l  
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That is to say, for M > 0  and e~ ]0, l /2],  there exist p e X  and ~0 k, r Cb, 
1 ~< k ~< p, such that 

qOk(X) Ok(y ) <~e/(16M 2) (3) O(x,y)-- sup 
x<~M,y<~M k = l  

and 

sup (  k xl k y, +x, i 
x<~M+6 k = l  
y<~M+6 

for some 6 > 0. With a function g as before, we set 

P 

O(P)(x, y) = ~ g(x) go~(x) h(y) Ok(Y) 
k = l  

If " 1 , ,  r: s = 5re s + u,), we then have 

lim sup I E [ ( ( ~ ; -  u,) | O) ] I  

~< lim sup E~IoloO(P)(x,y)(o'~-us)(dx)(~-Us)(dY) ] 

+ 4 s u p E [ f  M fo M r k~_l Ok(x)Ok(Y)rc:(dx)rc'~(dY) 1 

[fof ] + 4 s u p E  ([r 
M 

rr fo ] + 4 s u p E  (]r 
n L O M  

The first term on the right-hand side is zero by Cauchy-Schwarz and (2), 
the second term is less than e/4 by (3), and the last two terms are less than 
C'/M by Theorem 2.1; the lemma is thus established. 

We start now to study the fluctuations 

(See ref. 12, pp. 126-127, for some comments about these signed measures.) 
Using Ito's formula, one can see that the following real processes are 

martingales for the filtration ~f7 = a(a~: 0 4 s ~< t), where q~ ~ bB(9t +): 

(MT, q))=(tlT, rp)-(rl~),q))-fs (q'~,A(�89 (4) 

= , 5A2qo) ds (5) 
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We shall see that under assumption (e'), which we will soon enumerate, 
(MT),~> o is a strongly integrable vector martingale in HI, for each n > 2; 
this result will be crucial in our study. But first we have to define H1. 

We observe that 

(A~qo)(x, y)= {f~ q)(u)du- �89 s i g n ( y - x )  

=[�89 f~ (y-  z)(x-z) qo"(z) dz)] sign(y-x) (6) 

o~(Alq))(x,y)-- ~ (y-z)~o"(z)dz s i g n ( y - x )  (7) 

6 2 1 Ox 2 (Alqo)(x, Y) = -~ IY - x ]  q0"(x) (8) 

and we then choose the following Hilbert spaces: 

1. H is the completion of @=N(9 l+ , 9 t )  (the set of infinitely 
differentiable functions with compact support) for the scalar 
product: 

<q0, 4' > = qo(0) 4'(0) + q0'(0) 4"(0) + f q)'(x) @"(x)(1 § X 2 ) dx 

2. Ho is the completion of ~ for the scalar product: 

<q,, r >o = ~o(0) 4'(0) + ~o'(o) 0'(0) + f ~o"(x) 4'"(x) dx 

3. H, is the completion of ~ for the scalar product: 

~p"(x) ~"(x) 
< q,, 4' >, = (p(o) 4,(0) + ~o'(o) ~'(o) + f (1 + x  2) dx 

We denote by B, Bo, and B~ the respective umt balls, by N, No, and 
N1 the respective norms, and by N, No, and N1 the dual ones. Observe 
that, if S~+ Y ,u(dy) < ~ ,  A(~) is a continuous operator from H to Ho and 
from Ho to H~. Our central limit result will be obtained under (a), (b), and 
the following assumptions: 

(e') supn E[<c~, x6>] < oe 

(d') <Uo, X6>< 
(e) supn EE~(,I~)] < 
(f) supn E[{(q~), X 4 > [ ]  < (30 

These six assumptions will be referred to as our "initial assumptions." 
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Remark. Assumptions (a), (b), (c'), (e), and (f) are satisfied, for 
instance, when the initial variables are i.i.d., for each n ~> 2, and when 

3a, Vn >~ 2, Xi~ o ~< a 

3. P R E L I M I N A R Y  RESULTS 

In this section we demonstrate two basic results. First, we prove that 
under our initial assumptions, ~n and M n are, for each n >~ 2, H~-valued 
processes. Then, we show that a deterministic differential equation related 
to (1) has a unique H~-valued solution. To obtain the second result, we will 
first show that M~ is a strongly integrable H~-valued variable. 

Proposit ion 3.1. 

1. Vn, t/n is an H~-valued process. 

2. Vn, Vt, M 7 is strongly integrable in H~. 

Proof. 1. Writing q~(x) = q)(0) + x~0'(0) + S~ ( x -  z) q)"(z) dz and 
using Cauchy-Schwarz, for all q~ e Ho we have 

I ~, q~)l = ~o'(o)(~7, x )+ 07, (x-z)~o"(z)dz 

~<l~o ' (0) l l (~ / ; ,x ) l+x/~  ~7, (x-z)  l~o"(z)ldz 

i=1 

%_~(~t,(fo,X__z)2dz)l/2(f? x~ 1/2\ 

"~-~(Ut,(fXo (X--z)2dz)l/2Qf? ,(ton(z),2dz)l/2)] 

~ N ~  n/~1 xn(o) ''[- XIAo(dX) 
1 (1 " XT(t)3/2)+f?x3/a 7 X-~ni~l ~lt(dx)] NO(~O) 

Furthermore, (qt, ~o) is a real random variable for all ~0 e ~ .  Since @ 
generates the Borel a-field of H6, the conclusion follows. 
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2. For y > x we observe that 

fil--r)(y--x) fy+V I (~r~p)(x, y)l -- ~o"(u) du dv 
--v 

J0f(l--r)(y--x) fX+Vy_v (l+u) (~o"(u) 1 + u2) '/2 du dv 

=[fff-r)(Y-X) (fy~_+f (l +u)2 du)i/2dvJNl(qg) 

The last inequality was obtained by applying Cauchy-Schwarz. Rough 
estimations give 

f~l-~)(Y- x) ( fXy +_~ ( l + u)2 du) l/2 dv < f~ ( f;Y ( l + u)2 du) l/2 dv 

~< CI(I +7 5/2 ) 

so if one takes a CONS (~Pk)k>~ 1 in H1, Parseval's identity gives 

2 
k~>l 

((er~o~)(X ' y))2 ~< C2(1 +ys)  

and 

E A2qgk(x,Y)<~C3( 1 +y6) 
k~>l 

By symmetry we then have 

A2~ok(x, y) <~ C4(1 + x 6 +y6)  
k~>l 

for all x, y. Therefore, 

E[~,=(MT)] = ~ E[<MT, ~ok) 2] 
k~>l 

E cq @ Azq~ k ds ~s~ k>~l 

~<C5 t ( l *  sup E [ - ( ~ : , x 6 ) ] ) < ~  
O~s<~t 

The proposition is proved. 
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Part 2 of this proposition allows us to conclude that M ~ is an 
H;-valued martingale. The next result is also crucial for what follows; it 
shows that a deterministic differential equation related to (1) has a unique 
solution in H~. 

Proposition 3.2. Let: 
oo 5 1. t~--~n,, in D([0, T], J g ~ ( ~ + ) ) ,  be such that So Y n, (dy)< oe for 

O<<.t<.T. 
A*(zc,): H~H[~ be defined by (A*(nt)7, qo)= (7, A(nt)q)), for , 

q~ EH0. 

3. t ~ Mt be a measurable mapping from [0, T] to H; such that 
S~I(M,)  dt < ~ and Mo = 70. 

Then the equation 

7 ,=  M r +  A*(ns)7sds 

has a unique solution in H~, given by 

7~ = 7,(O)~o - 7 , ( 1 ) ~ ;  + 7 , (3 )  

where 

with 

7t(O) = M,(O) 
q,(1) = Mr(l) 

7t(3) = 7;'(2) 

+ I~ flexp lj A*(~v) dvl A*(~s)Mst (2; x) ds 

[-Note: We identify H~ with 9l |  ~l~| "] 

Proof. To prove uniqueness, we note that the difference 0 between 
two solutions has to satisfy 

f2 O, = A*(rc,)O ds 
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But, in general, we have 

(A*(~s)~A(0) = 0 

(A*(xs)q,)(1) = 0 

(A*(%)rL)(2; x )=  - �89 {[qs(O)x+q~(1)] f; (y-x)  ~s(dy) 

f: } + q~(2; x) ly-xl ~s(dy) (9) 

It is then easy to see that ~t(O)=O, t~t(1)=O; from which we obtain 

C+xIt 
10,(2;x)l~< 2 o IrL(2;x)l ds 

Uniqueness then follows from Gronwall's lemma. 
To show that the given r/, is a solution in H~, we have to see that each 

of its terms is in H~. First, M, has been chosen to be in H~ so it is also 
in H~. Second, qo is also in H; and from 

= �89 [qo(0)x + qo(1)] 

x f~ {exp[- �89 f~ f? ly-xln~(dy)dv]} f; (y-x)rL(dy)ds 

+ {exp I - � 8 9  f ? [y-xllt~(dy)dv]}qo(2;x) (10) 

one easily deduces, since 5~ ySrL(dy ) < m, that the second term is in Hi .  
Third, from (9) with Ms instead ofrL, we have that A*(n,)Ms is in H~; this 
concludes the proof, since 

{[exp f: A*(rcv) dv] A*(~s)M~} (2; x) 

= {exp [ - � 8 9  f~ f ?  [y-xJ~v(dy) dv]}(A*(rCs)M~),2;x) 

Indeed, this last expression follows from (10) with A*(ns)M ~ replacing r/o. 

822/72/1-2-23 
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4. R E L A T I V E  C O M P A C T N E S S  

The next result implies that, for each n >/2, ~/n and M ~ have their paths 
in D([0, T], H ' ) ,  where H~ is the weak dual of H. It is also a starting 
point for showing relative compactness because it makes possible, as in 
ref. 3, the use of a criterion in ref. 5. 

T h e o r e m  4.1. Under our initial assumptions, we have the following 
results: 

T N I ( M  , )] < oo. 1. sup, E[suP0<,< -2 , 

, < r N  ( q , ) ] < ~ .  2. supn E[suP0< -2 

Proof. 1. By part 2 of Proposition 3.1, we have already established 
that 

EEArZ(M~ -) [ ~< C5 T(I + sup , 6 E[(XI,~) ]) 
O<<.s<~ T 

But, noticing that N(MT)= superB1 (MT, q~) is a positive submartingale, 
we only have to use Doob's inequality to obtain the desired result. 

n 1 n 2. Proposition 3.2 allows us to write, for ~ o e Ha n d  ns=5(e~+Us) ,  

(rlt, q})=(Mt, q~)+(rlg, S(O,t)qg)+ ( s,A(n'~)S(s,t)cp)ds 

where 

;/ S(s, t) = exp A ( ~ )  dr, s <~ t 

By (6)-(8), we have that 

(A(n~)q})(x) = (A(n~)~0)(0)+ (A(n~)q})'(0)x 

fo ;o ( x - z )  I z -  yl nn(dy) q}"(z) d z 

We then put 

(Bs~o)(x) = (A(~n)~o)(0) + (A(~")~o)'(0)x 

fo fo (C,q})(x) = -- �89 ( x -  z) I z -  Yl n~(dy) q}"(z) dz 
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and observe that 

(C, + Bs )B  v = O, CsB,  = O, BsB ~ = 0 

since A ( g ~ ) ( a + b x ) = 0 .  We are then able to write (4) as the sum of five 
terms: 

( [ ( ; ; )  (r/7, q) ) = ( M  7, ~o ) + r/g, exp C~ dv 

+ ;: "." ~, (S:' ~o "711~'} .) 

+;](M:,(B.+Cs)(expf;C. dv)') ds 
The second result is then a consequence of the following five estimates. 

1. Using the same lines of proof as those used in proving part 2 of 
Proposition3.1, but for a CONS (q)k)k.>l in H, we have, by Doob's 
inequality, 

E[  sup sup(MT, q0) 2] -..<4E[sup(M~., ~o) 2] 
O<~t~T ~o~B q ~ B  

<<. C T  sup E[(X'[,s) 4] 
O<~s<~T 

2. SUpo~<,~< r sup~o~8(q~, (exp[toCvdv)~o)2<~N2(qg).  

3. The identities 

give 

where 

(A(~)~o)'(0) = } f o  [q ' (Y)-  q~(0) - yq,'(0)] U(ay) 

= ( y  - x)  q~"(x) ax , (@)  

f;;;;;, '-e-""" = ( y - x )  b . ( t , x )  q/ ' (x)axzr '~(dy)ds(rlg,  x )  

b.(t, x) = �89 I x -  zl ~'l(dz) ds 
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This implies that 

E[oSUtP T sup <~g, [foJBvdv k~>~ 1 (fO Cvdu)k- i /k ,]  @)2] 

I ~ s  •(dY') 2 ] ~<E C sup t y3/27z ds ( qg, x ) 2 
O<<.t<~T 

[(So ] CT 2 sup E y3/27z ( rl~ , X) 2 
O<~s<.T 

<~CT 2 sup (E F'~ 
-1\1/2 [Jo Y6 7(dY)]) (E[(~g'x)4]"/2 

4. The fourth term is treated in the same way as the third, but with 

�89 f] ~: i~ (Y-x) {exp [ -  �89 I] lx-zl  ~(dz) dv]} (o"(x) dx g~(dy) ds 

n M n as the coefficient of (qg, x )  (= (q,, x )  = ( s, x)).  

5. We let Ls, t(q~ ) = Cs (exp S t, Cv dr)q) and we denote by B~ the ball 
with radius c in Ho. By the second initial assumption, we have that 

I(Zs,,)(~0)"(x)l ~< e(1 + x2)l/21q)"(x)l 

which is to say 

No(L,,,(fp)) <. cN(~o) 

We then obtain 

Mn E[ sup sup<M~s,L~,,(~o)>z]<~E[ sup sup< ,,~o> 2] 
O<<.s~t<~ T q~ B O<~s<~ T q~BcO 

~< 4El sup (M~., q~)2] 
q~B~ 

< CT sup E[(XT, s) 4] 
O<~s<~T 

Under our initial assumptions, these five estimates yield the second result. 

T h e o r e m  4.2. Under our initial assumptions, the laws {P'} of the 
fluctuation processes are relatively compact for the weak convergence on 
D([0, T], H ' )  and any limit law P has its support in C([0, T], H~). 

ProoL The space H'  endowed with its weak topology is a Lusin 
space. Moreover, since H(~ is the weak dual of a separable Fr6chet space, 
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the space D([0, T],H;) (with the associated Skohorod topology) is 
also a Lusin space (Fernique, (s) Theorem 3.2.1). To show the relative 
compactness of the laws of the fluctuation processes {q"},~> 2, it is enough 
to verify (Fernique, <s) Theorem 4.4) the following two conditions: 

(a) There exists a sequence (Km)m>>., of weakly compact subsets of 
H'w such that 

Vm~>l, Vn>~2,  P~{3te[O,T]ltf~r 

(b) For all (peN, the sequence of real processes {(it n, q))}ff=2 has 
relatively compact laws in Jg~(D([0,  T], 9t)). 

Property (a) is straightforward. One just has to let 

M =  sup E[  sup ~rz(t/7)] < oo 
n O<~t<~T 

and to apply Tchebychev's inequality to the sets Kin= {r/eH'l~r(~/)2~ < 
M2m}. It remains to verify property (b). To establish this property, we 
will use the following lemmas, which will be proved under our initial 
assumptions. 

L e m m a  4.1. For any C e N ,  

lim supP"{ sup I(qT, r > M } = 0  
M~foo n O ~ t ~ T  

(11) 

Lemma 4.1 is an easy consequence of Theorem 4.1. Now, in order to show 
the next lemma, we first introduce some notation and other tools which we 
will use in the sequel. For each function f in D([0, T], 91) and 6 > 0 we set, 
as in Billingsley, (1) 

W"(f, fi)=sup{[f(t)-f(r)[ A [f(r)--f(s)l;O~s~r<<.t~T, t - s<6}  

We then have (Parthasarathy, (m Chapter VII, Lemma 6.4, p. 235) 

sup [f(t)-f(s)l<~2W"(f6)+ sup [f( t)- f( t-)[  (12) 
s, t e [ O , T ]  O ~ t ~ T  
] t - - s [ < 6  

We also denote r~ = inf{t ~> 0:~r(r/~')2 > R } and Y~' = (r/~',, ~, (o). Hence, 
by Theorem 4.1, we have that 

lim sup P"{z~ ~< T} = 0 (13) 
Ri"oo  n 
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Furthermore, since z g is a stopping time, the processes 

= . . _ <rls,A(-~(%+Us))go>ds (M'~,, ~, go> Y t -  (rio, go} . 1 . 

sT^,~(go) = <MT^ ~,  go>2_ <~"s| n, 1A2go> ds 

are martingales for the filtration (fr 
We now state Lemma 4.2. 

k e m m a  4.2. Using the above notation, we have 

E[<M'~^ r go >2 _ <MT^ ,2' go >21 f#r~] ~< C ( t -  r), a.s. 

Proof of Lemma 4.2. From the definition of <M~'^ ~7~' go>, we have 

E{<MT̂  ~ '  go}2_ <M~"^ ~, go>21~7} 

} ^ zR ( n(~O~n �89 dul~r - -  n n 

A ~R 

Since the process (S~'^ ~(go)) is a martingale with respect to the filtration 
(fiT), the right-hand side of this equality may be written 

E {f/̂ ~[f~ ,̂.R +• �89174 dulqq'~} 

This expression is bounded by 

E {f:̂ ~"s[f~̂ ~ +• C,(x+y)~:(dx)|  

=2C, E ^~"~ <a"u,x>dul~'~ 

= 2 C , E  ;i~__1Xe,.dul~ ~ 

Finally, the energy being conserved, we have that 

E{<MT^.~ ' go>2__ < M r . ,  go>21 ~r} 

" . X,~,o d u [ ~  ~2C1E t - r )  A zR ni=l 

i = 1  
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Hence, using Condition 3(b) of Theorem 2.1, we obtain 

E{ (MT^ ,], q~ )2 _ (M~ ^ ,], cp >21 ~7) ~ c ( t -  r), a.s. 

Lemma 4.3. Under the hypothesis of Theorem 2.1 and with the 
above notation, we have 

" A(~(~s+Us))q~) ~r <<-gv(qg)(t--r), a.s. E(io~^r (tls ' 1 n n 

where KT(~o) is a constant depending only on T and ~o. 

Proof of Lemma 4.3. Let " -  ~ rc - ~(c~ + u~). By the Cauchy-Schwarz 
inequality we have 

E ~ I ,^*~ (-~, A(~Z~s)qg) ds  2 ~n} 

<~ E t - r )  A "r ~ , (tlT, A(TrT)q~)2dslf#7 
^ ~ 

IA T~ 

Writing [0, K] for the support of q~ and C for the different positive 
constants, we now show that N2(A(rc'~)~o) <~ C(1 + K 2) N2(q~), a.s. 

Observe that 

t"  

N (A(~)~p)<C j [(A(Ttv)q))"(x)]2(1 +x2) dx 

~Cf[o, K3{I- �89 dx 

Since for any ve  [0, T] the integral ~yuv(dy) is finite and according to 
Condition 3(b) of Theorem2.1, there exists a > 0  such that Vn, 
Z hi= 1 X~',o/n <~ a a.s., then for each v e [0, T], the integral ~+ y ~'~(dy) is 
finite a.s. and we have that 

N2(A(u~)q~) ~ C(1 + K 2) N2(q~), a.s. 
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Therefore, the inequality (14) can be written 

E ^ ~ <~n, A(~, ')~> ds ~r 

<~ C(I + KZ) N2((P)(t-r) E {f[ ^r } N2(C)  avl ~r , 

But 

Bezandry et  al.  

a , s .  

E ^ ~[ NZ(t/g) dvlff'~ <~ T. R 

so that  by substitution we obtain that  

} (IJr^~"R (rl,,A(rc,~)(p) (#7 =Kr(q))( t-r) ,  a.s. 

where Kr(q)) depends only on T and q~. This is the desired result. 

I . e m m a  4.4.  Fo r  any triple s ~< r ~< t, we have: 

n 2 n 1. E{ IYT-  Yrl l(~r} <~gr((P)(t-r), a.s. 
2. E{IYT-  n 2  n Yr[ IYr -- Y~12} <~K~'(~o)(t-r) 2, a.s. 

where Kr(q)) and K~(q~) are positive constants depending only on T 
and (p. 

Proof of Lemma 4.4. 1. For  any couple r < t, we have that  

E{IYT- Yr'12 1 fr " } ~E{<Mn̂ ~'~, (p>2__ <M~'̂  ~, go >= I (~r " } 

+ 2E (~r ^ 4 (~" '  A ( ~ )  avl~fr" 

so that  by Lemmas  4.2 and 4.3 we obtain 

E { I Y T -  Y~"[21~7}~KT(~0)(t--r), a.s. 

2. For  any triple s ~< r ~ t, we have 

n 2 n n 2 ~ -  - Y~)  ] = E [ ( Y ~ - -  - E[(Y, Y~) (Yr Y~')2 E[(Y'~ Y~)21(#r']] 

<~ K~(go)(t - r ) (r-  s) 

Hence 

n 2 E l l  Y~' - yn121 yn __ Ys [ ] ~< K~(~o)(t - s) 2 
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Lemma 4.5. 

lim sup P"[W"(Y", 6)>e /4 ]  = 0  
650 n>~No 

Lemma 4.5 follows immediately (1) from part 2 of Lemma 4.4. 
We now give the proof of (b). According to Theorem 15.5 

Billingsley, (1) it suffices to check the following two conditions: 

(bO 

(b2) 
such that 

For all ~ > 0, there exists an integer No ~> 1 such that 

I <q~', ~o>[ > M ]  = 0  

For all q ~ 

lim supP"[  sup 
M T ~  n O<~t<~T 

of 

For any e > 0 and q e @, there exists 6 > 0 and an integer No >/2 

sup P"[  sup I<rtT,~o>-<~%~o>l>~l~<~ 
n ~ N o  s , t~[O,T] 

T t - s l < 6  

Property (bl) is exactly Lemma 4.1 as stated above. We therefore verify 
(b~). 

Let us fix ~ > 0 and q ~ @ and afterward choose an integer No large 
enough that when n 7> N 0, 

4 ilq, ll~ ~<~ 

Since the probability that more than two components of Xn(t) change at 
the same time is zero, we then have 

P" L0~<,~<rsup [ q, r r/,_,~0>l .,,/n 

which implies that 

P" ILO<~t<~Tsup [ ( r / ~ , ~ o > - ( r / t , c p > , ~ < 2 ] = l  

On the other hand, because of property (13), Lemma 4.5 implies 

lira sup P"[W"(<r/", q>, 6 )>e /4 ]  = 0  
650 n>:No 

Hence, by inequality (12), we get 

lim sup P"[  sup I<nT, q~>-<~7,~o>l>~]=o 
650 n>~No s , t~[O,T]  

[t-- sl < 6 

This is precisely property (b), so that the proof of Theorem 4.2 is complete. 
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5. CONVERGENCE 

Adding to our initial assumptions the hypothesis that {q~)}n~>2 
converges to ~/o weakly in H ' ,  we prove that the sequence {qn}n~> 2 o n  
D([0,  T] ,  H ' )  has a unique limit point; hence, this sequence converges. To 
do so, we will first show that, for each limit point, some expressions are 
martingales. This will allow us to identify a Wiener process on C([0, T],  
H ' ) ;  this process has nonstationary increments. Finally, we shall see that 
any limit point is a solution of a Langevin equation; uniqueness then 
follows from Proposition 3.2. 

Theorem 5.1. Under all our initial assumptions, we have that the 
fluctuation process laws pn on D([0,  T],  H ' )  converge to a continuous 
process which is the unique solution of the Langevin equation: 

f2 q t = t / o +  A*(us)tlsds+ Wt 

Here W is a Wiener process whose quadratic characteristic is 

Io (Us| �89 ds (15) 

ProoL By Proposition 3.2 and part 1 of Theorem 4.1, q can be 
written explicitly in terms of qo and W. To show the convergence of the 
fluctuation process laws, it is then enough to check (7) that: 

(A) For  each limit law P, W is a continuous martingale with non- 
random characteristic. 

To establish (A), we will use two propositions. In order to state the first 
of these, we introduce some notation. 

We know that under P", for each f ~ C~ and ~0 ~ ~ ,  

f2 f((~l'], q~))- cn(f, ~o,q'~)ds 

is a martingale, where 

C"(f,q~,~/~")= ~/~,A (~s+u , )  ~o f ' ( (~/ ; ,q~}) 

,( 1 )  
1 

+ 12,/  an(s, 
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with an(s, co) such that 

[a,(s, co)l ~< (e7 | eT, IA3[ (,0) Hf"[[ 

and 

(IA3lq~)(x, y)= IqoOqo(x*(r), y*(r))-qoGq~(x, y)13rlx- yl dr 

We then set 

C(f, ~o, q : ) =  (~/:, A(us)qo)f'((tf~, ~p)) 

l (Us(~Us, 1A2q~ ) f"( (q:, qo)) +~ 

and observe that 

349 

lim EEIC"(f ,  q~, q ' ] ) - C ( f i  ~p, t/~)l] = 0  
n ~ o o  

Proof. From IA3[ q~(x, y) <. C(x +y) and our second initial assump- 
tion, we see that the expectation of the last term goes to zero as n goes to 
infinity. Because of part 2 of Theorem 4.1 and our fourth initial assump- 
tion, the expectation of the first term is also going to zero. Indeed, 
remembering (6)-(8), we have 

(r/n @ r/n, A l(p ) 

= f :  f :  f2' l(z-y)(z-x)cp"(z)dzsign(y-x)rl:(dx)tl~s(dy) 

= q/'(z) (z-y)(z-x)t l:(dx)q~(dy) dz 

" C . 1 C'( f  ~o, qs)-  ( f ,q~ ,qs )=2~n  (rl~| f'((q'~, q))) 

1 
+ -~ ( o~ ~ @ cz ~ -- u ~ @ ,U s , A z qo ) f " ( ( q ~ , r ) ) 

1 
+ - -  a.(s, co) 

lZx//n 

We now state Proposition 5.1. 

Proposi t ion 5.1. Under our initial assumptions, for each f e  C 3 
and each q~ ~ N, 
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= ~o"(z) (z - y ) (z -  x) r/7(&) r/'2(dy) 

] - (z-y)(z-x)r/".(ctx)r/"s(@) dz 

= i? ~o"(z) { I -  foy r/;(@ )][ i; (z- x) ,7(dx) ] 

- I f ;  (z- x) r/7(ax)]~} & 

and therefore, denoting by K the compact support of q~, we obtain 

EI-I (r/~ | r/,", Al~p) I ) ]  

-4<c1 {E[ I (q~ ,  y>l fK i~(z-x)n'~(dx)dz] 

+ F~ I IK ( I~ (z- x) r/".(& ) ) 2 az]} 

<-.. C2 { EEl ( r/g, y )[2]~/2E [ fK ( f~ (z- x) r/"s(dx) ) 2 dz] */2 

+ E[;x ( f] (z- x) r/'~(dx)) 2 dz]} 

E[N (q,)] } ~< C3{E[I {r/g, y)12] 1/2 E r N 2 ( r / n ) ]  1/2 -~- - 2  n 

The second term also goes to zero because of the following lemma. 

L e m m a  5.1. Under our initial assumptions, 

lim E[I (~," | c~, 4 ) -  (Us| 4)1]  = 0  
n 

for all continuous symmetric q/: 9l+ x 91+ --, 91 such that 

I~(x. y)l ~<o(a + x ) 0  +y)  

Proof. Since 

<c~7|174 ~b> = < (c~7-u,) | ~b> +2( (~7- -u , ) |  ,, ~p) 

the result follows from Lemma 2.1. 
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Proposition 5.2. Under our initial assumptions, every limit point 
of the sequence ~n {P },/>2 is such that, for each f eC~  and each ~0E~, 

f((tl,, q~))- C(f qg, tls)ds 

is a martingale. 

Proof. By Proposition 5.1 we just have to show, as in ref. 2, that for 
each bounded, continuous q~, 

lim E " [ f s  (q~, A(us)~O ) f ' (  (rls, q) ) ) qs(rl) ds] 
;7' ~ O0 

=~ (~s,A(.s)~O)f'((~.,~o))~(~)ds (16) 

where {n'} is a subsequence such that {P"} weakly converges to a limit 
law P and/~" , /~  are the corresponding expectations. 

To establish (16), we prove two lemmas. In order to state these 
lemmas, we define the variable g: D([0, T], H'~) ~ ~ by 

g(q)= (rls, A(us)~P) f'((rl,, ~o))~(rl)ds 

We also observe that, since a compact K of D([0, T], H ' )  is metrizable, g 
is continuous on K if and only if g is sequentially continuous on K. 

Lemma 5.2: 

lim f Ig(t/)l P"(dr/)=O 
M ~ o o  {[g(q) l  > M }  

Proof. We have that 

f sup 
{Ig (n ) l  > M }  O ~ < s ~  t 

Hence, the lemma follows from part 2 of Theorem 4.1. 

Lomma 5.3. The p,,og-1 weakly converge to Pog-1.  

Proof. On a compact K we have 

sup sup N(~/s)< 
q ~ K  O~<s<<.t 
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Therefore,  g is sequentially cont inuous  on K. On  the other  hand,  since by 
T h e o r e m 4 . 2  the sequence {P"'} is tight, there exists, for each 5 > 0 ,  a 
compac t  K, in D( [0 ,  T] ,  H ' )  such that  

inf P(n'){t/n' e K~} > 1 -- e and  
n '  

Now,  let k be a bounded  (say by 1) cont inuous  function, and set h = k o g. 
Now,  since by Theorem 4.1, {t/n' } is tight. We know that  h [K~ is cont inuous  
and thus m a y  be extended to a cont inuous  function h still bounded  by one; 
this can be done  because D( [0 ,  T ] ,  H ' )  is a regular  Lusin space; thus it is 
normal .  Therefore,  

lim sup [E" ' [h ]  - E [ h ] [  ~< lim sup [~n ' [~]  __ ~[~]1  

+ l i m  sup I E " ' [ h -  h][ 

+ lim sup I/~[h - h]l  

~ < 0 + 2 e + 2 ~  

L e m m a  5.3 is thus proved,  as is Propos i t ion  5.2. 
The  p roof  of Theo rem 5.1 is a lmost  complete.  Indeed, for a fixed 

q ~ @ ,  (q",  q~> is bounded.  Therefore,  taking f such that  f ( x ) = x  on a 
large interval,  we define 

;/ ( w , ,  q , )  = ( . , ,  ~0) - ( n o ,  ~o) - (A*(us),Ts, ~o) ds 

Recalling (5) and our  deductions,  we see that  W is a cont inuous  mart ingale  
with n o n r a n d o m  characterist ic given by (15). 

We conclude this work  by point ing out  that  t / i s  Gauss ian  as soon as 

(it0, W) is. 
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